Манипуляция статистикой

Материал из Русского эксперта
Перейти к: навигация, поиск
Lermontov 64.jpgНезавершённая статья
Эта статья ещё не доделана. Она требует значительного расширения и/или может иметь крупные недостатки в оформлении и содержании (пустые заголовки, неструктурированный текст, маргинальные мнения и так далее). Вы можете помочь в доработке статьи. Добавьте сюда больше информации.

Как говорят, «есть ложь, есть наглая ложь, и есть статистика». А почему? А потому что статистикой часто манипулируют, чтобы ложные данные выглядели наукообразно и правдоподобно.

Применительно к политической жизни манипуляция статистикой важна на выборах. Можно сымитировать всестороннюю поддержку кандидата и шаткое преимущество превратить в уверенное. А можно посеять зёрна сомнения насчёт честности выборов.

Содержание

[править] Манипуляция источниками данных

[править] Нерепрезентативная выборка

Есть два нарекания к плохим выборкам: маленькая (слишком большие погрешности) и с перекосами (не отражает структуры всей генеральной совокупности).

Собрать достаточно репрезентативную выборку — это в своём роде искусство, и если оно не прокатывает, может случиться забавное.

Из книги Дарелла Хаффа «Как лгать при помощи статистики». Журнал Literary Digest по результатам широчайших (10 млн) опросов пришёл к выводу, что на выборах победит Альфред Лэндон. А победил Франклин Рузвельт. Просто те, кто имели телефон и подписывались на Literary Digest, были достаточно богаты и поддерживали Республиканскую партию.

Другой пример оттуда же. Для испытания прививки от полиомиелита 450 детей привили, 680 оставили. Во время эпидемии ни один привитый не заболел. Здесь вопрос в крайней редкости болезни, в группе такой численности заболеют в среднем двое, и чтобы результат был статистически значим, нужна выборка раз в пятнадцать больше.

[править] Разновидность: ошибка выжившего

Один из важнейших способов получить выборку с перекосами так, чтобы никто ничего не заподозрил. Когда есть «выжившие», по которым информация легкодоступна, и «погибшие», по которым информации нет, заманчиво взять выборку из «выживших» и сказать: вот репрезентативная выборка. Но это неверно: важная информация скрывается среди «погибших», и хотелось бы восстановить, какая именно. Особенно если задача — не стать «погибшим».

Начнём с примера, который ввёл в обиход математиков ошибку выжившего. Абрахам Вальд, работая математиком на силы Коалиции во Второй мировой войне, получил задачу. Не все бомбардировщики возвращались с полётов. Те, которые всё-таки вернулись, оказались изрешечены пробоинами. Все пробоины нанесли на одну модель; крылья и хвост оказались все в пробоинах, а кабина и центроплан — чистые. Верно ли, что надо добавить брони на крылья и хвост? Вальд сказал: нет! Они все в пробоинах, потому что достаточно прочны. Самолёт, которому попали в кабину, не вернётся, которому попали в крыло — долетит. Потому укреплять надо как раз чистые зоны.

Точно так же из старых машин и зданий дошли наиболее прочные и практичные, рекламист Гельмут Крон («Фольксваген») сыграл на этом: «Теперь таких не делают».

«Погибших» можно делать и искусственно, этим грешат реалити-шоу, которые выводят наименее перспективных участников, пока те не заполучили своих поклонников.

[править] Метод техасского стрелка

Метод техасского стрелка: стрельнуть и нарисовать мишень там, куда стрельнул, а неудачные пробоины залатать. Это связано с другим методом демагогии: Свиногогия.

Из книги Дарелла Хаффа «Как лгать при помощи статистики»: «Предположим, некая немногочисленная группа потребителей в течение полугода ведет учет состояния своих зубов, а потом переключается на пасту от Doakes. Далее можно ожидать одного из трех вариантов: кариеса станет больше, кариеса станет ощутимо меньше или никаких изменений не последует. Если события пойдут по первому или последнему варианту, производитель пасты просто зафиксирует эти показатели (где-нибудь у себя, вдали от глаз общественности) и предпримет новые попытки. Рано или поздно в дело вмешается случай, и у испытуемых зафиксируют-таки значительное улучшение, достойное газетных заголовков, а то и целой рекламной кампании. И случится это независимо от того, пользуются ли испытуемые пастой Doakes, питьевой содой или своим привычным средством по уходу за зубами».

[править] Давать на сравнение совершенно разные цифры

Известный рекламный трюк: подключить второй фактор и сделать вид, что он ни к чему. Из статьи Сергея Абдульманова «Как айтишник по магазинам ходил»:

А вот про такое я даже не думал. Давайте ещё раз: они обещают мне заметный результат через две недели. Как они проверили? Мыли голову вот этой штукой и, внимание, фокус, ещё одной другой штукой. И эти обе штуки вместе оказали заметный результат. Почти идеальная логика.

Из книги Дарелла Хаффа «Как лгать при помощи статистики»:

В Америке псевдообоснованные цифры переживают бум раз в четыре года. Впрочем, это не свидетельствует о циклической природе таких цифр, а просто напоминает, что именно с такой периодичностью проходят выборы. Предвыборное заявление, обнародованное Республиканской партией в октябре 1948 г., целиком и полностью построено на цифрах. Создается видимость, что эти цифры связаны друг с другом, но это не так:
Когда Дьюи в 1942 г. был избран на пост губернатора, минимальный размер зарплаты учителей в некоторых районах составлял такую малость, как $900 в год. Сегодня школьные учителя в штате Нью-Йорк получают самые высокие зарплаты в мире. По рекомендации губернатора Дьюи, которая основывалась на сведениях, полученных в ходе работы назначенного им комитета, легислатура штата выделила из бюджета штата $32 000 000 на обеспечение немедленного повышения заработной платы школьным учителям. В результате минимальный размер зарплаты учителя в Нью-Йорке варьируется в пределах от $2500 до $5325.

Совершенно не исключено, что мистер Дьюи проявил себя как друг учителей, да только приведенные цифры об этом не свидетельствуют. Это старый как мир трюк с «было» и «стало», когда для показа разительных перемен втихомолку приводят в действие ряд факторов, а потом представляют дело так, будто эти факторы ни при чем. Здесь у нас имеется «было» $900 и «стало» от $2500 до $5325. Это, бесспорно, создает впечатление, что положение улучшилось. Но меньшая цифра отражает нижний порог зарплаты учителя в каком-нибудь сельском районе штата, а цифры побольше — диапазон заработных плат учителей в самом Нью-Йорке. Может быть, при губернаторе Дьюи улучшения действительно произошли, а может быть, и нет.

Оттуда же:

Ещё один образчик подмены объекта исследования явил сенатор Уильям Лангер, когда возопил, что «мы могли бы взять заключенного из „Алькатраса“ и поместить на содержание в „Уолдорф-Асторию“ — дешевле бы обошлось…» Дело в том, что сенатор от Северной Дакоты ссылался на ранее опубликованные данные, что содержать узника в тюрьме «Алькатрас» стоит $8 в сутки, а «это стоимость номера в хорошем сан-францисском отеле». Здесь произошла подмена общих затрат на содержание (в «Алькатрасе») на одну только стоимость номера в отеле.

[править] Подмена источника данных

Как говорят, «по результатам опроса, проведённого в Интернете, 100 % населения подключены к интернету».

Более тонкая манипуляция: скажи возраст жены. На 35 годах будет пик, выше, чем 34 или 36 — просто потому, что если кто-то возраст не помнит, даёт округлённую цифру. Куда надёжнее спрашивать год рождения жены.

[править] Манипуляция обработкой

[править] Спутать среднее, медиану, моду и квантиль достаточного уровня

Начнём с неформальных определений.

  • Математическое ожидание случайной величины — это, грубо говоря, «среднее по бесконечной выборке».
  • Мода — наиболее часто встречающееся значение.
  • Квантиль уровня α — такой x, что вероятность попасть в диапазон (−∞; x) будет α, а в диапазон [x; +∞) — соотвественно, 1−α. Слово «квантиль» мужского рода.
    • Квантиль уровня 0,5 — вероятность «недолёта» 0,5 и вероятность «перелёта» 0,5 — называется медианой.
    • Три квантиля уровней 0,25, 0,5 и 0,75 — квартили. Девять квантилей уровней с 0,1 по 0,9 — децили. 99 квантилей с 0,01 по 0,99 — процентили.

У нас в статистике, к сожалению, нет математически заданной случайной величины, есть только выборки. Что с ними можно сделать?

  • Математическое ожидание можно приблизить выборочным средним.
  • Чтобы найти моду, строят гистограмму, сглаживают её, убирая случайные колебания, и её максимум будет модой. Несколько максимумов — несколько мод.
  • Чтобы найти медиану, выстраивают экспериментальные значения по порядку и берут центральный. Точно так же — при достаточном размере выборки — можно получить любой квантиль.

Когда распределение симметричное и колоколообразное, матожидание, медиана и мода совпадают. Но часто статистика имеет дело с несимметричными распределениями. Так, если в фирме босс, получающий 10000 $, два инженера с доходом 1500, пять токарей с доходом 800 и семь грузчиков с доходом 300, имеем среднее 1273 $, медиану 800 и моду 300. Выбирай любое среднее в зависимости от того, в каком свете хочешь показать доходы.

Другое заблуждение более хитрое — и, к сожалению, очень распространённое. Берём медиану или среднее, и считаем, что эта цифра — надёжная граница. Живой пример.

Не все из нас живут под метро, а автобусы обычно ходят случайно и с неприемлемо долгими интервалами. Допустим, поездка «в среднем» длится 45 минут. Подсознательно хочется выходить за 45 минут до времени Ч, особенно сильным мужчинам, которые могут бегом подсократить пешеходное плечо. Но слишком уж часто приходится бежать: если ваше «среднее» — это медиана, в половине случаев вы будете опаздывать; если это среднее арифметическое — несколько реже. Успевать при любых обстоятельствах? Непрактично, особенно если закладываться на такие редкие события, как две аварии подряд, растянувшие пробку на всю улицу. Потому надо говорить: нас, например, устраивает успевать на 90 % встреч. Другими словами, нужный срок выхода — квантиль уровня 0,9.

Из книга Дарелла Хаффа «Как лгать при помощи статистики»: «Сходным образом мелкие опущенные детали в труде под названием „Нормы развития Гезелла“ ввергли в панику папочек и мамочек. Дай только родителю прочитать раздел, где говорится, что в возрасте стольких-то месяцев ребенку уже полагается сидеть, и он сейчас же примерит это к собственному малышу. А поскольку примерно половина детей к указанному возрасту всё ещё не научилась сидеть, это сделало несчастными многих и многих родителей. Этого недоразумения во многом удалось бы избежать, если бы наряду с показателем „нормы“ или среднего значения был бы указан диапазон этой самой нормы. Тогда родители увидели бы, что их дети попадают в пределы нормы и прекратили бы беспокоиться по поводу мелких и ничего не значащих отклонений».

[править] Спутать априорную, условную и апостериорную вероятность

Допустим, мы исследуем вероятность заболеть, если был привит и если не был. Тогда у нас:

  • Априорная вероятность — вероятность заболеть (уколот ли — неизвестно).
  • Условная вероятность — вероятность заболеть, если был привит. Или если не был.
  • Апостериорная вероятность — вероятность, что ты привит, если ты заболел (или если не заболел).

Априорная вероятность связана с условными по формуле полной вероятности. Апостериорная вероятность связана с условными по формуле Байеса.

Например (цифры выдуманные): из 100 уколотых заболели 20. Из 10 отказавшихся заболели все. Тогда:

  • Априорная вероятность — 30/110 ≈ 0,27.
  • Условная вероятность, если привит — 0,2. Условная вероятность, если не привит — 1.
  • Апостериорная вероятность быть привитым, если не заболел — 1. Если заболел — 20/30 ≈ 0,67.

Вот мы смотрим на последнюю цифру и говорим: двое из трёх заболевших привиты! А ведь прививка превращает почти верную болезнь в 20 %!

Из книги Дарелла Хаффа «Как лгать при помощи статистики»: «Уровень смертности в военно-морском флоте США в период Испано-Американской войны 1898 г. составлял девять человек на тысячу. За тот же период уровень смертности среди гражданского населения Нью-Йорка достигал шестнадцати человек на тысячу. Позже эти цифры использовали вербовщики, чтобы показать: служить в ВМС безопаснее, чем находиться за его пределами. Допустим, что сами эти цифры точны (вероятно, так оно и есть). Давайте остановимся на мгновение и проверим, сообразите ли вы, что лишает практически всякого смысла сами эти цифры, или хотя бы заключение, которое выводили из них вербовщики. Всё дело в том, что группы, к которым относятся вышеуказанные цифры, несопоставимы. В рядах ВМС служат главным образом молодые мужчины, признанные здоровыми. Гражданское же население состоит среди прочего из малых детей, стариков и больных, и для этих категорий населения уровень смертности выше, где бы они ни находились».

На языке математики: априорную вероятность (вероятность умереть на гражданке, независимо от того, годен ли ты в армию) выдаём за условную (вероятность умереть на гражданке, если ты годен).

Если одна из вероятностей мала, полученные цифры сильно отличаются от интуитивных. Например: алкотестер одного трезвого из ста принимает за пьяного (а вот пьяного обнаружит всегда). На дороге один пьяный на тысячу трезвых. В таком случае лишь 9 % попавшихся действительно пьяны. Этим осложняется борьба с терроризмом: когда по городу-миллионнику ходят сто террористов, какие нужны вероятности, чтобы не ломать жизни невинным! (rwp:Ошибка базового процента)

Фриц Морген задал очень милую задачу про апостериорную вероятность, вот ответ на неё.

См. также: Парадокс Спящей красавицы.

Связанные методы: Подмена источника данных, Нерепрезентативная выборка

[править] Агрегация искажает тенденцию (парадокс Симпсона)

Если в выборках есть перекосы в объёме и условных вероятностях, то при их объединении тенденция может даже смениться на противоположную!

В 1972 году и впоследствии в 1992 в Великобритании прошло исследование по заболеваниям щитовидной железы и сердца у женщин. Нас интересует один кусок этого исследования — смертность пожилых женщин при курении. Было проверено, умерла женщина 20 лет спустя или нет (возраст показан на начало исследования).

Курит Нет
Умерло 107 132
Выжило 174 175
% умерших 38,1 % 43,0 %

Что, сигарета спасает жизни? Не всё так просто.

45…54 55…64 65…74
Курит Нет Курит Нет Курит Нет
Умерло 27 12 51 40 29 101
Выжило 103 66 64 81 7 28
% умерших 20,8 % 15,4 % 48,6 % 33,1 % 80,6 % 78,3 %

В молодом возрасте много курят, а шансы умереть малы. В старости обычно врач или обстоятельства не дают курить, большинство курильщиц перемёрло, и курящая старуха, скорее всего, будет отличаться завидным здоровьем, зато вероятность помереть высока и так.

Если уж нужны именно две цифры — вероятность умереть в том или ином случае — приходится перевзвешивать выборки, чтобы привести их к обычному распределению по возрастам. А так излишняя агрегация данных — зло; если в выборках есть перекосы, надо их высветлять, а не заметать под ковёр агрегации.

Связанные методы: Давать на сравнение совершенно разные цифры; спутать априорную, условную и апостериорную вероятность; проблема Нью-Йорка и Монтаны.

[править] Ошибки с процентами

Например: добавили 25 % и отняли 25 %, и получилось 1,25·0,75 ≈ 0,94. А не единица.

[править] Скрыть малую выборку за излишней точностью

Из книги Дарелла Хаффа «Как лгать при помощи статистики»: «Давным-давно, когда Университет Джонса Хопкинса только начал принимать девушек, некто, не испытывавший особых восторгов по поводу совместного обучения, обнародовал данные, ставшие для многих потрясением: оказывается, 33 1/3 % студенток университета повыходили замуж за преподавателей! Однако исходные цифры позволяли точнее оценить картину „бедствия“. На тот момент в списке учащихся числились три девушки-студентки, и одна из них действительно вышла замуж за преподавателя».

В общем, если «да» ответило 4 из 17, надо писать «24 %» или даже «25 %», но не «23,5 %». Как говорят математики, «лишняя цифра — половина ошибки». Поэтому, кстати, манипуляторы не любят круглых выборок: не получается наделать много значащих цифр.

Общее правило здесь — число значащих цифр не должно превышать число цифр в размере выборки (исключая степени десятки, естественно). Так, если в опросе приняло участие 880 человек и 456 из них ответили «да» — то результат деления нужно округлять до третьей цифры, то есть до 51,8 %. Разница между десятыми долями процента — уже больше одного человека, поэтому сотые доли не имеют никакого смысла. Излишнее число знаков позволяет скрыть совпадение или круглое число, которое не нравится манипулятору.

Нечасто используется надпись «24 %»: если последняя цифра точная (±1 единица), она крупная; если её погрешность до 3 единиц (≈√10), её пишут мелко; если ещё выше — цифра опускается.

[править] Умалчивание доверительного интервала

Тесты на IQ сами по себе предвзятые: по мнению Вассермана, они исследуют небольшую часть человеческих способностей, и на них можно натаскаться. Но речь не об этом. Если у одного человека IQ=98, а у другого 101, правда ли, что один умнее другого? Нет, особенно если в полной записи теста написано «98±3» и «101±3».

Однажды провели исследование по содержанию вредных веществ в сигаретах. Одна из марок оказалась на последнем месте с пренебрежимым отрывом — и она по этому поводу устроила рекламную кампанию, какие они маловредные.

[править] Интегральные цифры там, где читатель их не ожидает

[править] Ложная корреляция

Под корреляцией будем подразумевать любую статистически значимую функциональную зависимость; не обязательно классическую линейную или ранговую корреляцию.

[править] Выдавать корреляцию за причину-следствие

Ошибка техасского стрелка бывает и в корреляциях: пересматриваем сотню параметров, находим, что среди них какие-то два коррелируют, и сообщаем: между ними статистически значимая корреляция!

[править] Третья причина

Классический для русского читателя пример третьей причины — из книги Петра Маковецкого «Смотри в корень». Журавли летят на юг, когда холодно. Где здесь причина, где следствие?

А нет тут причины, они оба — следствия северного ветра. В северный ветер холодно, и он помогает лететь на юг.

[править] Отсутствуют поправки на покупательную способность валюты

К сожалению, покупательная способность валют стран СССР не так стабильна, как хотелось бы. Курс постоянно растёт, и чтобы сравнивать растущую пенсию даже в пределах нескольких лет, надо делать поправки на инфляцию.

В США тоже есть инфляция, и поправки на неё обязательны, когда счёт идёт на десятилетия.

[править] Передаточному звену выставить источник на посмешище

Набившие всем оскомину 146 %

Многие из нас могут сложить в уме два числа, а некоторые — знакомы с этими приёмами. Задача проста: делаем наглую манипуляцию данными, чтобы внимательный мог всё же увидеть, что цифры нечистые. В результате неверной обработки данных будет подорвано доверие к их источнику.

Тут примером будут печально известные «146 %». Не будем выяснять, было это намеренно или просто ошибка в нехитрой программе, готовившей график, главное: ЦИК РФ был выставлен на посмешище.

[править] Разновидность: реальные артефакты в данных объявить манипуляцией

Основная статья: Миф:Гауссиана на выборах

Часто реальные данные не похожи на «идеальные» вероятностные распределения. Например, потому, что генеральная совокупность неоднородная. Или потому, что выборки ограничены и просто статистически ½ и ⅓ выпадают чаще, чем 0,4567.

[править] Манипуляция графиками

Вообще-то, нарисовать график — это тоже обработка. Но весёлые графики — это отдельный жанр креативной статистики.

[править] График без нуля

Что будет, если исключить 0 из шкалы

В биржевой спекуляции с высокими плечами важен рост или падение курса даже на один пункт[1]. Если в анализе временны́х рядов мы слишком далеко ушли от фактического размаха данных — плохой прогноз. Для всего этого графики могут и не иметь нуля.

Но это специфические задачи, и в большинстве задач всё-таки ордината пропорциональна величине. И если тихонько обрезать ось, чтобы 0 ординат был равен, например, тысяче, небольшие колебания будут казаться дикими скачками.

Метод крайне частый. Поэтому не забывайте смотреть на шкалу. Если шкала не с нуля, или мелким шрифтом, или график показывают ограниченное время, чтобы шкалу не увидели — вас нажигают! Специфические отрасли, где такой график оправдан, не в счёт.

[править] Разрыв в оси

Post догнала News?.. А вы не заметили разрыва?

Достаточно разорвать ось, и далеко отстоящие величины будут казаться близкими.

[править] Трёхмерность

Трёхмерность искажает величины, и этому есть несколько причин.

  • Неравномерное искажение (даже в параллельной проекции). Несмотря на то, что параллельная проекция сохраняет площадь фигур, лежащих в одной плоскости, эта самая площадь становится трудночитаемой.
  • Искажения, вносимые перспективой. Как собственно перспективные искажения, так и «антиперспективные», когда мы подсознательно исправляем искажения, которых в действительности нет.
  • Невозможно совместить штрихи (которые на «стенке» диаграммы) и парящий посередине пузырёк или столбец.
  • «Незначимые» части диаграммы — скажем, боковая поверхность цилиндра на секторной диаграмме — увеличивают закрашенную площадь.
  • Некоторые кодируют величину объёмом трёхмерной фигуры. Такое вообще не воспринимается на плоском экране — только если покрутить объёмные тела в руках.

Метод крайне частый. Трёхмерные диаграммы иногда хороши, но всю свою силу они проявляют, когда есть возможность их покрутить мышью. А если нет — задумайтесь. Если данные можно успешно показать и в 2D — вас гарантированно дурят!

Более радикальные специалисты (например, Эдвард Тафти, американский статистик, автор нескольких книг по визуализации данных) считают, что секторная диаграмма — в принципе надувательство, так как невозможно сравнить близкие по размеру секторы.

[править] Двойной масштаб

Падение биржевых рейтингов по версии «Делового Петербурга»

Опять отличились русские СМИ, на сей раз «Деловой Петербург» — роскошно прикрыли ужасающее падение российского биржевого индекса во время кризиса 2008 года.

Оказывается, американский индекс читается по левой шкале, немецкий и русский — по правой. И на обеих шкалах нет нуля.

Действительно, двойной масштаб иногда нужен (например, вывести на один график высоту и скорость самолёта). Но когда данные, которые нужно непосредственно сравнивать, вынесены на разные шкалы — это фол.

[править] Относительные данные рисовать на абсолютной шкале

Перерисованный график (абсолютная шкала)
Перерисованный график (относительная шкала)

Хорошо, перерисуем график из «Делового Петербурга» (цифры для простоты взяты не все). Что в нём не так (рис. 1)?

А в том, что биржевой индекс сам по себе никакой роли не играет. Важно, во сколько раз он поднялся или опустился. Если перерисовать график ещё раз, на сей раз в процентах, картина будет удручающая (рис. 2). Стоимость американских акций упала на треть, русских — вчетверо. Спасибо компании Powerlexis и Асе Боярчиковой за красивый пример.

Сходные приёмы: Скрыть тенденцию за мелким масштабом.

[править] Фигура, символизирующая величину, растёт по обоим измерениям

Так во сколько раз упал доллар? Реально — вдвое. На глаз — втрое-вчетверо. К тому же мешает рука, закрывающая кусок купюры.

Рисуем столбцовую диаграмму. Мелко и некрасиво! Тогда берём и заменяем столбцы на какие-нибудь картинки. Чем больше величина, тем больше картинка. Вот только мозг сразу и не поймёт, что воспринимать: линейные размеры или площадь картинки. (В пузырьковых диаграммах и прочих «законных» применениях этого метода считается, что величина должны быть пропорциональна площади, то есть размер — квадратный корень).

Вариация номер один. Получилось, наоборот, крупно. Чтобы сделать диаграмму компактнее, накладываем одно изображение на другое. Правда, наш мозг отлично исправляет перспективные искажения и тот предмет, который «дальше», кажется больше.

Вариация номер два. Рисуем человечка; размер пропорционален квадратному корню. Для человеческих фигур мы перестаём воспринимать площадь и начинаем воспринимать именно рост.

Метод нередкий. Видишь фигуру, которая растёт по обоим измерениям — будь настороже.

Бывает, что метод оправдан. Например:

  • Пузырьковая диаграмма, когда из-за обилия осей приходится подключать и размер пузырька.
  • Масштабный чертёж, когда все объекты увеличиваются или уменьшаются в N раз по сравнению с реальностью.


[править] Скрыть важную тенденцию за мелким масштабом

[править] Скрыть важную тенденцию за неудачным срезом

[править] «Проблема Нью-Йорка и Монтаны»

Или, раз уж мы патриоты, Москвы и Сибири. Такое бывает в данных, наложенных на географическую карту: город Нью-Йорк занимает 0,01 % площади США, но содержит 2,7 % населения. Монтана — это 4 % территории и 0,3 % населения. Картинка «Обама против Маккейна» (2008) вся красная, но победил синий Обама. Второй подход также оставляет желать лучшего (сложновато просуммировать площадь этой россыпи, да и цветопередача монитора может вмешаться), но хотя бы ближе к делу.

[править] Игра в ассоциации

Но ведь Intel традиционно синий, AMD — красный или зелёный…

Roses are red, and violets are blue. Сначала идёт начальная школа, потом среднее образование, потом высшее, потом научное (магистратура, аспирантура, докторантура).

Достаточно спутать цвета или порядок — и график начинает восприниматься намного хуже. В некоторых статистических программах есть предпросмотрщик, позволяющий одним глазком посмотреть на данные, но не дающий настроить график — для подобных выборок, где цвет важен, это бесит!

Метод нередкий, обязательно взгляните на легенду!

[править] Начхать на все договорённости

Ещё в шестом классе школьников учат рисовать и читать диаграммы. И то, за что школьнику ставят кол, у взрослых почему-то прокатывает.

На первой картинке мы видим производство энергии в США в 1977 году и два прогноза на 2000 (New York Times). Вот только масштаб не соблюдён: почему-то 14>18.

На второй — телеканал Fox Chicago отчитывается о президентских праймериз 2012 года. Чуров отдыхает — в сумме аж 193. Вообще-то цифры хорошие, ведь в опросе разрешалось выбирать несколько ответов. Грех в том, что эти результаты наложили на круговую диаграмму вместо обычной линейной — а ведь зритель предполагает, что полный круг равняется 100 %.

Во многих штатах США есть интересная доктрина: человек может защищать свою собственность вплоть до причинения смерти, и претензий у полиции не возникнет — правда, для этого собственность должна быть размечена, отсюда таблички «Частная собственность», которые мы привыкли видеть в кино. По мнению многих, что-то подобное стоило бы сделать и в России, но дело не в этом. В 2005 году закон приняли и во Флориде, и агентство «Рейтер» разразилось таким графиком (рис. 3). А вы не заметили, что ось ординат растёт вниз и с принятием закона количество смертей от огнестрельного оружия как раз подскочило (рис. 4)?

Пятый рисунок сделан из искусственных данных, но не менее показателен: сразу спутанная легенда и непонятного вида трёхмерная фигура.

[править] Примечания

  1. Биржевой пункт — минимальная единица цены; если цена фиксируется в десятых долях цента, то пункт — 0,1¢. То, что с плечами в 1000 и более обычно торгуют на «форекс-лохотронах» — вопрос другой.